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How do you characterise a visual system!?

A useful tool: Fourier analysis

Relationship to natural scenes
Contrast Sensitivity Functions

Farly stages of visual processing
Local/Gabor-based decomposition (LGN &V )

Motion processing (space-time RFs)

Why Fourier analysis?



* Fourier (1822) showed that any signal can be
decomposed Into a sum of sine waves at

different frequencies, amplitudes and phases




- Amplitude for a sine wave grating gives luminance contrast

Michelson contrast = Lmax - Lmin
Lmin + Lmax
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- Spatial frequency determines the variations across space
Reported as the number of cycles in a spatial region (peak to peak)

Captures the fine vs. coarse detall In an image

| cyc/image 2 cyc/image 4 cyc/image 8 cyc/image |6 cyc/image

Low » High



* Phase determines the point at which variations occur in
space, e.g. the starting point of the cycle

Represented In radians with a cyclical structure
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—low do we make an image using sine waves!

—asiest example: a square wave

- How do you get a square wave from sine wave components!




Fundamental (F)

- lake a sine
wave with
matched spatial
frequency: the
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* Representation of a | D
square wave In terms of
its components Is easy

amplitude

Plot SF against amplitude
0 f 3f 5f /f

- Gives us an amplitude .
T spatial frequency

spectrum for | D stimull
DC term



Fourier analysis allows
the decomposition of
any 2D image into
the sum of Its
components at
different SF and

orientations

Returns phase and
amplitude of those
components

Spatial frequency (low to high) 0



* Simple example: a sine wave with 4cyc/im at 90deg

Image

Amplrtude

Brightness =
amplitude

Orientation of
modulation

Radial separation = spatial frequency
(Further from centre = higher SF)

Note that Fourier analysis returns both +f
and -f components plus the DC component
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- Amplitude spectra of
two natural images

* The house has more
vertical and horizontal
structure, seen In the
spokes of Its
amplitude spectrum

- Kittens are fluffier
(1.e. there Is less high
frequency content)
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* What does spatial
frequency mean for
natural scenes?

* Low-pass filtering:
allow only the lowest
Sks to be visible
(broad blobby things)

* High-pass filtering:
allow only the highest
Sks to be visible
(edges & fine detall)




’hase spectrum |
blotted with the
same conventions

But for natural
scenes It's hard to
interpret visually -
easler to understand
T we modify the
phase spectrum




* Replace the phase
spectra of these images
with the phase from a
white noise iImage and
combine it with the
original amplitude
spectra

- Kitty amplitude spectrum
gives blobby noise

*  House amplitude gives
edgy noise with a lot of
cardinal orientations




+ Combine the kitty
amplitude spectrum
with the house phase
spectrum

Makes a blobby house

The opposite combination
s an edgy cat

 The phase of edges Is
very important for
objects (Oppenheim &
Lim, 1981)




» Fourler analysis gives us a way to think about scale
Images contain information at different spatial frequencies

Which of these components is visible to an observer?

- A common way to examine spatial vision Is to test acuity,
which Is akin to the highest visible spatial frequency

* With Fourier analysis we can take a broader view of the
image content that Is visible to a given observer



First: how do we characterise spatial variations?
Cycles/image 1s OK for theoretical Fourier analyses

But for visual perception, image size on the retina Is affected by
both size and distance

Nleed to measure retinal size

Calculated as degrees of visual angle, where tan() = Height/Distance

For SF gives cycles/degree




What we see Is
determined by
the visibility of
information at
different spatial
frequencies -
different scales
of analysis
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Contrast (amplitude)

high

low

Spatial frequency

high
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- Campbell & Robson
(1968):

Measured contrast
sensitivity (inverse of
threshold!) at a range of
spatial frequencies

Contrast sensitivity function
(CSF) 1s band-pass & peaks
around 4 c/deg

Defines our ‘window of
visibility’

Contrast sensitivity
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» CSF can capture our
visual experience across
the visual field

* With increasing
eccentricity (moving into
the periphery), the CSF

shifts to lower SFks
(Rovamo et al, 1978)

- Le.we |lose sensitivity to
high spatial frequencies

100

Contrast sensitivity
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- We can use this to think about the vision of other species

- What does a cat see! (Bisti & Maftel, 19/4)

Present gratings on a monitor

Present/absent task \

Cats trained to press a lever
when grating Is seen, with a o
milk reward when correct |

T
I

Grating contrast and SF / Lo
varied along Method of & Ao e

Constant Stimuli

Fig. 1. Schematic diagram of the experimental set up
(for explanations see text).

23



* Feline sensitivity:

Has a lower cutoff point
(1.e. worse acuity limit)

Peaks at a lower SF
(0.3-0.4 cyc/deg)

But sensitivity much
nigher than ours In the
ow SF range

Do cats see strange
shadows on the wall?

Contrast sensitivity

cats=>us us=>cats

00 | l l
100 | Cat - .%
of
¥
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2 |-
Ll Lo ooeanu | e eeunl L 1]
005 01 02 05 1 2 5 10 20

Spatial frequency (c/deg)

Fig. 4. Comparison of the contrast sensitivity curves of the cat and
of a human subject (L.M.) in similar experimental conditions.
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- Why do we show this pattern of sensitivity?

- Campbell & Robson (1968) hypothesised that the visual

system I1s composed of spatial frequency channels - each
sensitive 1o a restricted range of SFs

- Blakemore & Campbell (1969) tested this using adaptation
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- Adaptation reduces sensitivity to contrast

- But does 1t affect all SFs or just those of the adaptor?
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- Adaptation to a sine grating
with /.1 cycles per degree

Sensitivity Is strongly reduced at 100
the adapted spatial frequency

Adapting SF

LR

Decreased effect for adjacent Sks

-h
o

- Consistent with multiple
channels for spatial frequency

Contrast sensitivity

IR

Evidence that we separate the
visual scene Into rts Fourier qol—t 1y 1 i

1-0 10 100
components (at least for SF) Spatial frequency (c/deg.)
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Does independent channels
mean Independent access to
each frequency band?

No: Pairing high SF image
with low SF image shows high
Sks are difficult to ignore

Low SFs can appear by squinting/
defocusing/shrinking the image

High spatial frequency
channels dominate the lower
Sks In object recognition

Schyns & Oliva (1999)
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* Fourler analysis:

Gives us a useful metric to consider the aspects of a scene that will
be visible to a person (or animal)

Describes meaningful aspects of our visual experience
» But do neurons also analyse visual input in this way!?

Receptive field properties in the early stages of visual recognition:
Lateral Geniculate Nucleus (LGN) of the thalamus

Cortical area VI (primary visual cortex)
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N ,Visual radiations

Calcarine
fissure

« Consider the earliest
stages of vision:

Primary visual
cortex (V1)

Retina

Thalamus (LGN)
' ' l : Tp pr:marr:/
Pl’“lmal"y Vlsual Cortex (\/ | ) Thalamus visual cortex
- Can Fourier analysis Laersl geniculte P

characterise the selectivity \ /]
. ‘:'.g Parvocellular layer
Of Nneurons 1IN these areaS? ((‘:\\\ Magnocelular

| é
/ | e

Superior
colliculus




- Both retinal ganglion cells and neurons In the
Lateral Geniculate Nucleus show centre-
surround receptive fields

Either on-centre or off-centre

- What is the purpose of this RF organisation?
We can picture this through “spatial filtering”

Convolve an image with a filter matching these RFs

Simulates how a population of neurons
with centre-surround RFs would “see’ the world

On-centre

Off-centre
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Centre-surround filters

Centre-surround
filtering highlights
the edges and
changes In the scene,
see e.g. Shapley &
Lennie (1985)

Varied sizes of RF
centre/surround
allows separation
into spatial

frequency bands
32



Functional subdivision

| ateral Geniculate Nucleus

has clearly defined layers

Magnocellular layers:

- lLarge cells

- Rapid response

«  Colour blind

Parvocellular layers:
-+ Smaller cells

- Slower response properties

« Colour selective

Koniocellular layers
(far less understood)

P4
P3

P2

Pl
M2

M

33



" ® P Alone

» Distinct patterns of spatial o M Alone
frequency selectivity:

8

- P cells: High contrast sensitivity
that matches overall sensitivity
of the monkey

Contrast Sensitivity
=)

« M cells: Much lower contrast

sensrtivity overall

| 10
Temporal Frequency
(Hz)

» M cells: sensitive to fast flicker from Merigan & Maunsell (1993)

» Likewise for temporal
variations:

« P cells: sensitive to slow flicker
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—lierarchical organisation of the visual
bathways:

RF sizes increase along the visual pathway

Cells show selectivity to particular
stimulus properties (e.g. dark vs. light)

Selectivity becomes increasingly complex
along the visual pathway

Hubel & Wiesel (1968):V1 cells are a
inear combination of LGN inputs,
allowing sensitivity to orientation

Receptive
field

D o

Selectivity ® 4
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 Present whrte noise in VI receptive field Gabor model
the receptive fields of
V| cells and correlate
cell responses with
bixel values

* Produces many V|
receptive fields that
look like Gabors

The multiplication of a I I I y n

sine wave with a 2D

Gaussian profile | I I n
X

De Angelis, Ohzawa & Freeman (1995)

Odd-phase

Even-phase




»+ Shape of VI receptive ) § 1
fields could allow a local 281 ' '
Fourier analysis (vs. a

olobal analysis over the
whole image) —— FREoUENCY  RESPONSE
i "

- (Gabors are an optimal
trade-off for uncertainty
N space/Sk

(Daugman, 1985)
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* The response of a bank of Gabor filters to a natural scene

- Different orientations at a range of spatial frequencies

c
O
=
(g
)
c
()
=
O

Original




V| cells are also
selective for direction
of motion

Show a preferred
direction of motion with
ittle response to the
opposite direction

Can we understand
the temporal domain
in terms of Fourler
components as well?

Hubel & Wiesel (1959)
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- Neurons' direction selectivity AT AT
can be modelled with filters = .O
* e.g. space-time inseparable RFs x X
* In these plots, direction Is an "*“'r "*“rl_' \
orientation In (x;t) space
N
N RN
X X
e mior S X X
; past
t y
present
3 t‘l’ t'!'
De Angelis, Ohzawa & Freeman (1995) (Adelson & Bergen, 1985;

Carandini, Heeger & Movshon , 1999)
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Local energy across
all directions

response

|

\
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 Action potentials are metabolically
demanding (Laughlin et al,, 1998)

(Rao &
Ballard, 1999)

- Solution: the visual system Is optimised
for the natural environment

Want efficient codes to minimise
redundancy (Barlow, 1961) by adapting cell
selectivities to the statistics of their input

Natural scenes show a consistent
spatiotemporal structure

Gabor-like filters allow a balance between

requirements of efficient coding and energy
cost (e.g. Rao & Ballard, 1999)

semmeen FECEh«APS
s oo DEILINTS
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Fourier analysis allows us to separate out properties like
orientation, phase, contrast, and direction in natural stimuli

We see evidence for spatial frequency channels that may
perform these analyses in the mammalian visual system

Allows us to characterise vision via the Contrast Sensitivity Function

Receptive fields in the early visual system can be thought
of as filters that perform a local Fourier analysis of scenes

This arrangement constrtutes an efficient scheme for
coding structure in the natural visual environment that
minimises metabolic cost
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Chapter 3 of erther Wolfe et al. or Goldstein et al.
Sensation & Perception gives an overview of these ideas

Further reading (iIf interested / confused):

- Papers referenced in the lecture, e.g.

Campbell & Robson (1968). Application of Fourier analysis to the visibility of
gratings.

Blakemore & Campbell (1969). On the existence of neurones in the human
visual system selectively sensitive to the orientation and size of retinal images.

Schyns & Oliva (1999). Dr. Angry and Mr. Smile:When categorization flexibly
modifies the perception of faces in rapid visual presentations.

DeAngelis et al (1995). Receptive-field dynamics in the central visual pathways.
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