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Today
• How do you characterise a visual system?	
• A useful tool:  Fourier analysis	

• Relationship to natural scenes	

• Contrast Sensitivity Functions	
• Early stages of visual processing	

• Local/Gabor-based decomposition (LGN & V1)	
• Motion processing (space-time RFs)	

• Why Fourier analysis?
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The Fourier Transform

• Fourier (1822) showed that any signal can be 
decomposed into a sum of sine waves at 
different frequencies, amplitudes and phases
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Sine wave amplitude
• Amplitude for a sine wave grating gives luminance contrast	

• Michelson contrast = Lmax - Lmin  
                               Lmin + Lmax
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Sine wave spatial frequency
• Spatial frequency determines the variations across space	

• Reported as the number of cycles in a spatial region (peak to peak)	
• Captures the fine vs. coarse detail in an image
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Sine wave phase
• Phase determines the point at which variations occur in 

space, e.g. the starting point of the cycle	
• Represented in radians with a cyclical structure
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From sine to square wave
• How do we make an image using sine waves?	
• Easiest example: a square wave	

• How do you get a square wave from sine wave components?
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From     to   ..
• Take a sine 

wave with 
matched spatial 
frequency: the 
fundamental	

• Add the odd 
harmonics with 
decreasing 
amplitude
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Representing the components

• Representation of a 1D 
square wave in terms of 
its components is easy	
• Plot SF against amplitude	

• Gives us an amplitude 
spectrum for 1D stimuli
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Fourier analysis in 2D
• Fourier analysis allows 

the decomposition of 
any 2D image into 
the sum of its 
components at 
different SF and 
orientations	

• Returns phase and 
amplitude of those 
components
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Representing a sine wave
• Simple example: a sine wave with 4cyc/im at 90deg
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Radial separation = spatial frequency	
(Further from centre = higher SF)	
Note that Fourier analysis returns both +f 
and -f components plus the DC component
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More sine waves
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2D analysis for scenes
• Amplitude spectra of 

two natural images	
• The house has more 

vertical and horizontal 
structure, seen in the 
spokes of its 
amplitude spectrum	

• Kittens are fluffier  
(i.e. there is less high 
frequency content)
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SF in natural scenes
• What does spatial 

frequency mean for 
natural scenes?	

• Low-pass filtering: 
allow only the lowest 
SFs to be visible 
(broad blobby things)	

• High-pass filtering: 
allow only the highest 
SFs to be visible 
(edges & fine detail)
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Phase in natural scenes
• Phase spectrum is 

plotted with the 
same conventions	

• But for natural 
scenes it’s hard to 
interpret visually - 
easier to understand 
if we modify the 
phase spectrum
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Phase scrambling
• Replace the phase 

spectra of these images 
with the phase from a 
white noise image and 
combine it with the 
original amplitude 
spectra	
• Kitty amplitude spectrum 

gives blobby noise	
• House amplitude gives 

edgy noise with a lot of 
cardinal orientations
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Phase swapping
• Combine the kitty 

amplitude spectrum  
with the house phase 
spectrum	
• Makes a blobby house	
• The opposite combination 

is an edgy cat	

• The phase of edges is 
very important for 
objects (Oppenheim & 
Lim, 1981)
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Vision via Fourier
• Fourier analysis gives us a way to think about scale	

• Images contain information at different spatial frequencies	
• Which of these components is visible to an observer?	

• A common way to examine spatial vision is to test acuity, 
which is akin to the highest visible spatial frequency	

• With Fourier analysis we can take a broader view of the 
image content that is visible to a given observer
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A note on units
• First: how do we characterise spatial variations?	
• Cycles/image is OK for theoretical Fourier analyses	
• But for visual perception, image size on the retina is affected by 

both size and distance	
• Need to measure retinal size	

• Calculated as degrees of visual angle, where tan(α) = Height/Distance	
• For SF gives cycles/degree
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Fourier analysis & visibility
What we see is 
determined by 
the visibility of 
information at 
different spatial 
frequencies - 
different scales 
of analysis
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Contrast sensitivity functions
• Campbell & Robson 

(1968):	
• Measured contrast 

sensitivity (inverse of 
threshold!) at a range of 
spatial frequencies	

• Contrast sensitivity function 
(CSF) is band-pass & peaks 
around 4 c/deg	

• Defines our ‘window of 
visibility’
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CSF: eccentricity
• CSF can capture our 

visual experience across 
the visual field	

• With increasing 
eccentricity (moving into 
the periphery), the CSF 
shifts to lower SFs 
(Rovamo et al, 1978)	
• i.e. we lose sensitivity to 

high spatial frequencies
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Visibility in other species
• We can use this to think about the vision of other species	
• What does a cat see? (Bisti & Maffei, 1974)	

• Present gratings on a monitor	
• Present/absent task	
• Cats trained to press a lever 

when grating is seen, with a  
milk reward when correct	

• Grating contrast and SF 
varied along Method of  
Constant Stimuli
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CSF of cats
• Feline sensitivity:	

• Has a lower cutoff point 
(i.e. worse acuity limit)	

• Peaks at a lower SF 
(0.3-0.4 cyc/deg)	

• But sensitivity much 
higher than ours in the 
low SF range	

• Do cats see strange 
shadows on the wall?
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What produces the CSF?
• Why do we show this pattern of sensitivity?	
• Campbell & Robson (1968) hypothesised that the visual 

system is composed of spatial frequency channels - each 
sensitive to a restricted range of SFs	

• Blakemore & Campbell (1969) tested this using adaptation
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Multiple ChannelsSingle Channel

Adaptation: predictions
• Adaptation reduces sensitivity to contrast	
• But does it affect all SFs or just those of the adaptor?
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Multiple SF channels
• Adaptation to a sine grating 

with 7.1 cycles per degree 	
• Sensitivity is strongly reduced at 

the adapted spatial frequency 	
• Decreased effect for adjacent SFs	

• Consistent with multiple 
channels for spatial frequency	
• Evidence that we separate the 

visual scene into its Fourier 
components (at least for SF)
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Independent access?
• Does independent channels 

mean independent access to 
each frequency band? 	

• No: Pairing high SF image 
with low SF image shows high 
SFs are difficult to ignore	
• Low SFs can appear by squinting/

defocusing/shrinking the image	

• High spatial frequency 
channels dominate the lower 
SFs in object recognition
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Neuro-Fourier?
• Fourier analysis:	

• Gives us a useful metric to consider the aspects of a scene that will 
be visible to a person (or animal)	

• Describes meaningful aspects of our visual experience	

• But do neurons also analyse visual input in this way? 	
• Receptive field properties in the early stages of visual recognition:	

• Lateral Geniculate Nucleus (LGN) of the thalamus	
• Cortical area V1 (primary visual cortex)
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Visual pathways
• Consider the earliest 

stages of vision:	
Retina	

Thalamus (LGN)	

Primary visual cortex (V1)	

• Can Fourier analysis 
characterise the selectivity 
of neurons in these areas?
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Centre-surround RFs
• Both retinal ganglion cells and neurons in the 

Lateral Geniculate Nucleus show centre-
surround receptive fields 	
• Either on-centre or off-centre	

• What is the purpose of this RF organisation?	
• We can picture this through “spatial filtering” 	

• Convolve an image with a filter matching these RFs	
• Simulates how a population of neurons  

with centre-surround RFs would “see” the world
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Centre-surround filters
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Centre-surround 
filtering highlights 
the edges and 
changes in the scene, 
see e.g. Shapley & 
Lennie (1985)
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Functional subdivision
• Lateral Geniculate Nucleus 

has clearly defined layers	
• Magnocellular layers:	

• Large cells	
• Rapid response	
• Colour blind	

• Parvocellular layers:	
• Smaller cells	
• Slower response properties	
• Colour selective	

• Koniocellular layers  
(far less understood)
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M & P selectivity
• Distinct patterns of spatial 

frequency selectivity:	
• P cells: High contrast sensitivity 

that matches overall sensitivity 
of the monkey	

• M cells: Much lower contrast 
sensitivity overall	

• Likewise for temporal 
variations:	
• P cells: sensitive to slow flicker	
• M cells: sensitive to fast flicker
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Building towards form
• Hierarchical organisation of the visual 

pathways: 	
• RF sizes increase along the visual pathway	
• Cells show selectivity to particular 

stimulus properties (e.g. dark vs. light)	
• Selectivity becomes increasingly complex 

along the visual pathway	
• Hubel & Wiesel (1968): V1 cells are a 

linear combination of LGN inputs, 
allowing sensitivity to orientation
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V1 filters
• Present white noise in 

the receptive fields of 
V1 cells and correlate 
cell responses with 
pixel values	

• Produces many V1 
receptive fields that 
look like Gabors	
• The multiplication of a 

sine wave with a 2D 
Gaussian profile
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V1 cells as Gabor filters
• Shape of V1 receptive 

fields could allow a local 
Fourier analysis (vs. a 
global analysis over the 
whole image)	

• Gabors are an optimal 
trade-off for uncertainty 
in space/SF
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• The response of a bank of Gabor filters to a natural scene	
• Different orientations at a range of spatial frequencies



From spatial to temporal
• V1 cells are also 

selective for direction 
of motion	
• Show a preferred 

direction of motion with 
little response to the 
opposite direction	

• Can we understand 
the temporal domain 
in terms of Fourier 
components as well?
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• Neurons’ direction selectivity 
can be modelled with filters	

• e.g. space-time inseparable RFs 	
• In these plots, direction is an 

orientation in (x,t) space

Temporal filters
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Stimuli and receptive fields in space-time

Adelson & Bergen, 1985 Carandini, Heeger & Movshon , 1999

(Adelson & Bergen, 1985; 
Carandini, Heeger & Movshon , 1999) 
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Temporal filtering
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Is there an advantage here?
• Action potentials are metabolically 

demanding (Laughlin et al., 1998)	
• Solution: the visual system is optimised 

for the natural environment	
• Want efficient codes to minimise 

redundancy (Barlow, 1961) by adapting cell 
selectivities to the statistics of their input	

• Natural scenes show a consistent 
spatiotemporal structure	

• Gabor-like filters allow a balance between 
requirements of efficient coding and energy 
cost (e.g. Rao & Ballard, 1999)
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Summary
• Fourier analysis allows us to separate out properties like 

orientation, phase, contrast, and direction in natural stimuli	
• We see evidence for spatial frequency channels that may 

perform these analyses in the mammalian visual system	
• Allows us to characterise vision via the Contrast Sensitivity Function	

• Receptive fields in the early visual system can be thought 
of as filters that perform a local Fourier analysis of scenes	

• This arrangement constitutes an efficient scheme for 
coding structure in the natural visual environment that 
minimises metabolic cost
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Reading
• Chapter 3 of either Wolfe et al. or Goldstein et al. 

Sensation & Perception gives an overview of these ideas	
• Further reading (if interested / confused):	

• Papers referenced in the lecture, e.g. 	
• Campbell & Robson (1968). Application of Fourier analysis to the visibility of 

gratings. 	
• Blakemore & Campbell (1969). On the existence of neurones in the human 

visual system selectively sensitive to the orientation and size of retinal images. 	
• Schyns & Oliva (1999). Dr. Angry and Mr. Smile: When categorization flexibly 

modifies the perception of faces in rapid visual presentations. 	
• DeAngelis et al (1995). Receptive-field dynamics in the central visual pathways.
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